Basic Probability

Terminologies & Properties

Probability is a branch of mathematics that deals with calculating the likelihood of a given event to happen or not, which is expressed as a number from 0 to 1.

What is an **Event**?

An **Event** is any collection of outcomes of a procedure.

What is a **Simple Event**?

An **Event** that cannot be further broken down into simpler components.

What is a **Sample Space**?

Sample Space is a collection of all possible simple events of a procedure.

Example:

Find the sample space for the following procedures.

- Single birth
- Flip a coin twice
- Flip a coin followed by rolling a four-sided die

Solution:

- Single birth \implies let's use B to denote a boy and G to denote a girl, then the sample space is $\{B, G\}$.
- Plip a coin twice ⇒ let's use H to denote heads outcome and T to denote tails outcome, then the sample space is {HH, HT, TH, TT}.
- If Flip a coin followed by rolling a four-sided die ⇒ let's use H to denote heads outcome and T to denote tails outcome along with numbers 1, 2, 3, 4 for the outcomes of the four-sided die then the sample space is {H1, H2, H3, H4, T1, T2, T3, T4}.

How do we find the **Probability** of an **Event**?

Probability(Desired Event) = The number of desired outcomes The number of all possible outcomes

Example:

Consider a full-deck of playing cards shown below.

What is the probability of randomly drawing an ace?

What is the probability of randomly drawing a face card?

Solution:

Probability(Draw an ace) $=$ = \approx	$\frac{\text{Number of aces}}{\text{Total number of cards}}$ $\frac{4}{52} = \frac{1}{13}$ 0.077
Probability(Draw a face card)	$= \frac{\text{Number of face cards}}{\text{Total number of cards}}$ $= \frac{12}{52} = \frac{3}{13}$ ≈ 0.231

Let E be all possible events, A be the desired event with P(E) and P(A) be the corresponding probabilities,

▶
$$0 \le P(A) \le 1$$

$$\blacktriangleright \sum P(E) = 1$$

• \overline{A} is the complement of the event A, which means not A.

•
$$P(ar{A})+P(A)=1$$
 , or $P(ar{A})=1-P(A)$

Example:

Which of the following values cannot be probabilities?

$$\frac{7}{5}, -0.75, 125\%$$

Basic Probability

Solution:

None of these values can be used to express the probabilities since they do not satisfy $0 \le P(A) \le 1$.

Example:

Find $P(\overline{A})$ if P(A) = .05.

Solution:

Since
$$P(\bar{A}) = 1 - P(A)$$
, so $P(\bar{A}) = 1 - 0.05$ then $P(\bar{A}) = 0.95$.

What is a **Sure Event**?

Event A is considered a **Sure Event** if P(A) = 1.

Example:

Suppose you roll a normal die. What is the probability that you will get a number less than 7?

Solution:

The probability that you will get a number less than 7 is 1 since any outcome is a number less than 7. The event is a sure event .

What is an Impossible Event?

Event A is considered an **Impossible Event** if P(A) = 0.

Example:

What is the probability that someone is born on February 30th?

Solution:

The probability that someone is born on February 30th is 0 since there is no such date on the calendar. The event is impossible .

What is a **Rare Event**?

Event A is considered a **Rare Event** if $0 < P(A) \le .05$.

Example:

What is the probability that randomly selected person has a birthday today?

Solution:

The probability that anyone randomly selected has a birthday today is $\frac{1}{365} \approx 0.003$ since that is less than .05, it is a rare event.

Basic Probability Scale

Example:

Suppose a red fair die and a white fair die is rolled. The display below shows all possible outcomes.

			e Die				
		1	2	3	4	5	6
	1	(1, <mark>1</mark>)	(2, <mark>1</mark>)	(3, <mark>1</mark>)	(4, <mark>1</mark>)	(5, <mark>1</mark>)	(6, <mark>1</mark>)
Red	2	(1, <mark>2</mark>)	(2, <mark>2</mark>)	(3, <mark>2</mark>)	(4, <mark>2</mark>)	(5, <mark>2</mark>)	(6, <mark>2</mark>)
Die	3	(1, <mark>3</mark>)	(2, <mark>3</mark>)	(3, <mark>3</mark>)	(4, <mark>3</mark>)	(5, <mark>3</mark>)	(6, <mark>3</mark>)
	4	(1, <mark>4</mark>)	(2, <mark>4</mark>)	(3, <mark>4</mark>)	(4, <mark>4</mark>)	(5, <mark>4</mark>)	(6, <mark>4</mark>)
	5	(1, <mark>5</mark>)	(2, <mark>5</mark>)	(3, <mark>5</mark>)	(4, <mark>5</mark>)	(5, <mark>5</mark>)	(6, <mark>5</mark>)
	6	(1, <mark>6</mark>)	(2, <mark>6</mark>)	(3, <mark>6</mark>)	(4, <mark>6</mark>)	(5, <mark>6</mark>)	(6, <mark>6</mark>)

- List all possible sums.
- What is the probability that the sum of the outcomes is 1?
- What is the probability that the sum of the outcomes is between 2 and 12, inclusive?

Solution:

- 0 List all possible sums $\Rightarrow \{2,3,4,5,6,7,8,9,10,11,12\}$
- **2** P(Sum = 1) = 0 since there is no outcome with the sum of 1.
- P(2 ≤ Sum ≤ 12) = 1 since the sum of any outcomes is between 2 and 12, inclusive.

Example:

Use the last example to complete the following table

Sum	2	3	4	5	6	7	8	9	10	11	12
P(Sum)											

then verify that
$$\sum P(Sum) = 1$$
.

Solution:

There are 36 outcomes altogether,

$$P(Sum = 2) = P((1, 1)) = \frac{1}{36}, P(Sum = 12) = P((6, 6)) = \frac{1}{36}$$
$$P(Sum = 3) = P((1, 2), (2, 1)) = \frac{2}{36}, P(Sum = 11) = P((6, 5), (5, 6)) = \frac{2}{36}$$
$$P(Sum = 4) = P((1, 3), (2, 2), (3, 1)) = \frac{3}{36}$$

We continue this to get the rest of the probabilities.

Sum	2	3	4	5	6	7	8	9	10	11	12
P(Sum)	$\frac{1}{36}$	2 36	3 36	4 36	5 36	6 36	5 36	4 36	$\frac{3}{36}$	2 36	$\frac{1}{36}$

It is easier to verify that $\sum P(Sum) = 1$ if these probabilities are not reduce.

Basic Probability

THERE'S A 100% CHANCE **OF ME TEACHING** YOU PROBABILITY