Basic Probability

Terminologies \& Properties

What is a Probability?

Probability is a branch of mathematics that deals with calculating the likelihood of a given event to happen or not, which is expressed as a number from 0 to 1 .

What is an Event?

An Event is any collection of outcomes of a procedure.

What is a Simple Event?

An Event that cannot be further broken down into simpler components.

What is a Sample Space?

Sample Space is a collection of all possible simple events of a procedure.

Example:

Find the sample space for the following procedures.
(1) Single birth
(7) Flip a coin twice
(3) Flip a coin followed by rolling a four-sided die

Solution:

(1) Single birth \Longrightarrow let's use B to denote a boy and G to denote a girl, then the sample space is $\{B, G\}$.
(3) Flip a coin twice \Longrightarrow let's use H to denote heads outcome and T to denote tails outcome, then the sample space is $\{H H, H T, T H, T T\}$.

3 Flip a coin followed by rolling a four-sided die \Longrightarrow let's use H to denote heads outcome and T to denote tails outcome along with numbers $1,2,3,4$ for the outcomes of the four-sided die then the sample space is $\{H 1, H 2, H 3, H 4, T 1, T 2, T 3, T 4\}$.

How do we find the Probability of an Event?

$$
\text { Probability }(\text { Desired Event })=\frac{\text { The number of desired outcomes }}{\text { The number of all possible outcomes }}
$$

Example:

Consider a full-deck of playing cards shown below.

What is the probability of randomly drawing an ace?
What is the probability of randomly drawing a face card?

Solution:

$$
\begin{aligned}
\text { Probability(Draw an ace) } & =\frac{\text { Number of aces }}{\text { Total number of cards }} \\
& =\frac{4}{52}=\frac{1}{13} \\
& \approx 0.077
\end{aligned}
$$

$$
\begin{aligned}
\text { Probability(Draw a face card) } & =\frac{\text { Number of face cards }}{\text { Total number of cards }} \\
& =\frac{12}{52}=\frac{3}{13} \\
& \approx 0.231
\end{aligned}
$$

What are the properties of Probability?

Let E be all possible events, A be the desired event with $P(E)$ and $P(A)$ be the corresponding probabilities,

- $0 \leq P(A) \leq 1$
- $\sum P(E)=1$
- \bar{A} is the complement of the event A, which means not A.
- $P(\bar{A})+P(A)=1$, or $P(\bar{A})=1-P(A)$

Elementary Statistics

Basic Probability

Example:

Which of the following values cannot be probabilities?

$$
\frac{7}{5},-0.75,125 \%
$$

Solution:

None of these values can be used to express the probabilities since they do not satisfy $0 \leq P(A) \leq 1$.

Example:

Find $P(\bar{A})$ if $P(A)=.05$.

Solution:

Since $P(\bar{A})=1-P(A)$, so $P(\bar{A})=1-0.05$ then $P(\bar{A})=0.95$.

Basic Probability

What is a Sure Event?

Event A is considered a Sure Event if $P(A)=1$.

Example:

Suppose you roll a normal die. What is the probability that you will get a number less than 7 ?

Solution:

The probability that you will get a number less than 7 is 1 since any outcome is a number less than 7 . The event is a sure event.

Basic Probability

What is an Impossible Event?

Event A is considered an Impossible Event if $P(A)=0$.

Example:

What is the probability that someone is born on February 30th?

Solution:

The probability that someone is born on February 30th is 0 since there is no such date on the calendar. The event is impossible .

Basic Probability

What is a Rare Event?

```
Event A is considered a Rare Event if 0<P(A)\leq.05.
```


Example:

What is the probability that randomly selected person has a birthday today?

Solution:

The probability that anyone randomly selected has a birthday today is $\frac{1}{365} \approx 0.003$ since that is less than .05 , it is a rare event.

Basic Probability Scale

Example:

Suppose a red fair die and a white fair die is rolled. The display below shows all possible outcomes.

		White Die					
		$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	
Red Bie	1	$(1,1)$	$(2,1)$	$(3,1)$	$(4,1)$	$(5,1)$	
	$(6,1)$						
	$(1,2)$	$(2,2)$	$(3,2)$	$(4,2)$	$(5,2)$	$(6,2)$	
	$(1,3)$	$(2,3)$	$(3,3)$	$(4,3)$	$(5,3)$	$(6,3)$	
	$(1,4)$	$(2,4)$	$(3,4)$	$(4,4)$	$(5,4)$	$(6,4)$	
	$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$	$(5,5)$	$(6,5)$	
	$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	$(6,6)$	

(List all possible sums.
(3) What is the probability that the sum of the outcomes is 1 ?
(5) What is the probability that the sum of the outcomes is between 2 and 12, inclusive?

Solution:
(1) List all possible sums $\Rightarrow\{2,3,4,5,6,7,8,9,10,11,12\}$
(2) $P($ Sum $=1)=0$ since there is no outcome with the sum of 1 .
3) $P(2 \leq$ Sum $\leq 12)=1$ since the sum of any outcomes is between 2 and 12, inclusive.

Example:

Use the last example to complete the following table

Sum	2	3	4	5	6	7	8	9	10	11	12
P(Sum)											

then verify that $\sum P(S u m)=1$.

Solution:

There are 36 outcomes altogether,

$$
\begin{aligned}
& P(\text { Sum }=2)=P((1,1))=\frac{1}{36}, P(\text { Sum }=12)=P((6,6))=\frac{1}{36} \\
& P(\text { Sum }=3)=P((1,2),(2,1))=\frac{2}{36}, P(\text { Sum }=11)=P((6,5),(5,6))=\frac{2}{36} \\
& P(\text { Sum }=4)=P((1,3),(2,2),(3,1))=\frac{3}{36}
\end{aligned}
$$

We continue this to get the rest of the probabilities.

Sum	2	3	4	5	6	7	8	9	10	11	12
P (Sum)	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

It is easier to verify that $\sum P(S u m)=1$ if these probabilities are not reduce.

THERE'S A
 100\% CHANCE
 OF ME TEACHING YOU PROBABILITY

